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Abstract. In this work a theoretical analysis is presented for wave propagation in a thin-walled prestressed elastic
tube filled with a viscous fluid. The fluid is assumed to be incompressible and Newtonian, whereas the tube material
is considered to be incompressible, isotropic and elastic. Considering the physiological conditions that the arteries
experience, such a tube is initially subjected to a mean pressure Pi and an axial stretch �z . If it is assumed that in
the course of blood flow small incremental disturbances are superimposed on this initial field, then the governing
equations of this incremental motion are obtained for the fluid and the elastic tube. A harmonic-wave type of
solution is sought for these field equations and the dispersion relation is obtained. Some special cases, as well as
the general case, are discussed and the present formulation is compared with some previous works on the same
subject.
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1. Introduction

Propagation of harmonic waves in an initially stressed (or unstressed) circular cylindrical
tube filled with a viscous (or inviscid) fluid has been a problem of interest since the time of
Thomas Young who first obtained the speed of pulse waves in human arteries. The current
literature on the subject is so rich that it is almost impossible to cite all the contributions
here. The historical evolution of the subject may be found in the books by McDonald [1] and
Fung [2] and in the papers by Lambossy [3] and Skalak [4]. Significant contributions to the
understanding of wave motions in elastic tubes filled with a viscous fluid have been made by
Witzig [5], Morgan and Kiely [6], Womersley [7], Atabek and Lew [8], Mirsky [9], Atabek
[10] and more recently by Rachev [11] and Kuiken [12]. In all these works, either the effects
of initial stresses have been neglected or taken into account in an ad hoc manner. Moreover,
the elastic coefficients of the incremental stresses have been treated as constants. In essence,
these coefficients are not material constants, but rather are functions of initial deformation.

For a healthy human being, the mean blood pressure is around 100 mm Hg and the axial
stretch of artery is about 1�5. This means that the inner pressure and the axial stretch create
relatively large circumferential and axial stresses. On the other hand, in the course of blood
flow, the pressure deviation exerted by the left ventricle is around �20 mm Hg. Considering
the stiffening properties of soft biological tissues with stress, the dynamical deformation
resulting from this pressure deviation may be assumed to be small compared to the initial
static deformation. Therefore, the theory of small deformations superimposed on large initial
static deformation may be utilized in analyzing wave propagation in such a composite structure.
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In this work, utilizing the mechanical model proposed by Demiray [13], in which the
arterial wall material is assumed to be incompressible, isotropic and elastic, we study the
propagation of harmonic waves in an elastic thin tube filled with an incompressible viscous
fluid. Considering the physiological conditions that the arteries experience first, we obtain
the stress distribution (or stress resultant) under the effect of a uniform inner pressure and a
constant axial stretch. Superimposition of a small, but dynamic displacement field over this
static deformation allows the governing incremental equations of motion for both fluid and
tube to be obtained when cylindrical polar coordinates are used. Seeking a harmonic-wave type
of solution to the field equations of the fluid and tube, and then using appropriate boundary
conditions, we obtain the dispersion relation. Various special cases are discussed and the
results are compared with previous studies on the same subject. Owing to the difficult nature
of the analysis of the general dispersion relation, a numerical technique has been employed and
the variations of propagation speed and transmission coefficients with Womersley parameter
and stretch ratios are evaluated. The results are depicted in graphical form.

2. Basic equations

Due to the interaction of blood with its container, the pulsatile motion of the heart leads to
wave phenomena both in blood and arteries. The governing field equations and the boundary
conditions should, therefore, include these interactions.

2.1. EQUATIONS FOR A FLUID

Depending on the scale of strain rates, blood behaves like a Newtonian and/or non-Newtonian
incompressible fluid. In the course of pulsatile flow in arteries, blood is subjected to a large
uniform pressure Pi and small velocity and pressure increments are added to this initial field.
This incremental behavior of blood may then be treated as an incompressible Newtonian
fluid. For axially symmetric motion, the governing differential equations in cylindrical polar
coordinates are given by
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and the incompressibility equation
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where �� is the mass density, � is the viscosity, �p is the incremental pressure, �u and �w are
incremental velocity components in the radial and axial directions, respectively. The stress
components which we need when applying the boundary conditions are given by
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2.2. EQUATION FOR A SOLID BODY

The arterial wall material is known to be incompressible, anisotropic and viscoelastic (see Fung
et al. [2] and Cox [14]). For its simplicity in nonlinear analysis, the arterial wall material shall
be assumed to be incompressible, homogeneous, isotropic and elastic. A set of stress-strain
relations for such a material was proposed previously by Demiray [13] as

tkl = P�kl + � exp[�(I � 3)]Bkl; Bkl = I1ckl � ckmcml; (2.4)

where tkl is the stress tensor, P is the hydrostatic pressure to be determined from the field
equations and the boundary conditions,� and � are two material coefficients to be determined
from experimental measurements, I = 1

2Bkk and I1 = ckk is the first invariant of the Finger
deformation tensor ckl, defined by

ckl = FkKFlK : (2.5)

Here FkK = @xk=@XK is the gradient of deformation xk = xk(XK) and the summation
convention applies to repeated indices. The stress tensor must satisfy Cauchy’s equations of
equilibrium

tkl;k = 0: (2.6)

Here the indices following a semi-colon denote the covariant (or contravariant) differentiation
with respect to those indices.

Now let us consider a circular cylindrical thin tube made of such an isotropic, incompress-
ible and elastic material subjected to a large inner pressure Pi and an axial stretch �z. Upon
application of such a symmetrical loading, an axially symmetric deformation field will be
developed in the body. Considering the incompressibility of the material, we may describe the
deformation in cylindrical coordinates by

r = (R2=�z +C)1=2; � ��; z = Z�z; (2.7)

where C is an integration constant to be determined from the boundary conditions. The
physical components of the tensor Bij may be given by
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Introducing (2.8) into (2.4) and then substituting the result in (2.6) we may give the stress
components satisfying the equilibrium equations by
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(2.9)
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Table 1. Pressure-radii relation for an artery

Pi(Pa) ri � 102 (m) r0 � 102 (m) Pi(Pa) Deviation
exper. theor.

3,350 0�348 0�401 3,275 �1�7
6,670 0�396 0�445 6,580 �1�4
10,000 0�425 0�473 9,938 �0�6
13,340 0�442 0�485 13,830 +3�6
20,000 0�467 0�510 19,886 �0�6
26,680 0�485 0�524 25,970 �2�7

At zero stress ri = 0�31� 10�2 m; r0 = 0�38� 10�2 m

with

F (��) � exp[�(��2
� + ��2

z + �2
��

2
z � 3)]: (2.10)

From (2.9) the inner pressure is expressed as

Pi = �

Z �i
�

�o
�

F (x)(1 + �zx
2)x�3) dx; (2.11)

where �i� and �o� stand for the values of the circumferential stretch ratios on the inner and
outer surfaces of the cylinder, respectively.

Equation (2.11) relates the deformation of the tube to the inner pressure Pi. If the inner
pressure-radius relation is known experimentally, by comparing theoretical results with exper-
imental measurements we can determine the material constants � and � numerically so as to
obtain the best fit between the experiment and the theoretical model

Simon et al. [15] conducted experiments on canine abdominal arteries and measured the
inner pressure-radii relations, listed in Table I for �z = 1�53. Using the least-squares method,
for the best fit of the theoretical model to the experimental measurements, we determine the
values of material coefficients as� = 0�82 and � = 10�1�103 Pa. Employing these numerical
coefficients in (2.11), we may calculate the theoretical pressures. These are listed in the fourth
column of the table. The deviation between experiment and the model is given in the fifth
column of the same table. The result reveals that the maximum deviation between theory and
experiment is about 3�6 percent, which seems to be a fairly good approximation. Therefore,
the constitutive relation given in (2.4) may also be used as a fairly good model to describe the
mechanical behavior of arterial wall material.

Having determined the initial static deformation and the associated initial stress t0kl upon
this field, we shall now superimpose a small axially symmetric displacement field u(z; t), or,
in component form, u1 = u(z; t); u2 = 0; u3 = w(z; t), where u and w are the incremental
displacement components in the radial and axial directions, respectively. Let r0 be the radial
coordinate of the midsurface of the tube after this finite initial deformation. A material point
located at (r0; �; z) on the midsurface will move to a new position (r0 + u; �; z + w) after
superimposition of such a small displacement field. Thus, the position vector of this point
after this final deformation will be

r = [r0 + u(z; t)]er + [z + w(z; t)]ez; (2.12)
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Figure 1. Forces acting on a small membrane element.

where (er; e�; ez) are the base vectors in cylindrical polar coordinates. The vector along the
generator of the cylinder transforms into

Tz =
@r
@z

= u;zer + (1 + w;z)ez;
@(�)

@z
�;z : (2.13)

The unit tangent vector is then defined by

tz = Tz=jTzj = u;zer + ez: (2.14)

In obtaining this expression we assumed the incremental displacements and their gradients to
be small.

The external unit normal vector n to the deformed midsurface of the tube is given by

n = e� � tz = er � u;zez: (2.15)

Now, let us consider a tube element placed between the planes � = const:; �+d� = const:; z =
const: and z + dz = const: (Figure 1). The elementary arc lengths dsz and ds� are defined by

dsz = jTzjdz �= (1 + w;z) dz

ds� = (r0 + u) d�: (2.16)

Similarly, the elementary area of this element on the midsurface is given as

da �= (r0 + r0w;z + u) dz d�: (2.17)

In order to write the equations of motion of the tube we need to know the total force acting
on this element. Let the external force acting per unit area of the inner surface be represented
by

P = Pttz + Pnn: (2.18)
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If the membrane forces along the vectors tz and e� are denoted by Nz and N�, then the total
force acting on this element is given by

F =
@

@z
[Nztz(r0 + u)]d� dz �N�er(1 +w;z) d� dz

+(Pttz + Pnn)(r0 + r0w;z + u) d� dz: (2.19)

Equating this force to mass times the acceleration of the element, which is given by

�h(r0 + r0w;z + u) d� dz(u;tter + w;ttez) (2.20)

and dividing both sides of the corresponding equation by (r0 + r0w;z + u) d� dz, we obtain

(r0 + r0w;z + u)�1[Nzu;ztz + (r0 + u)(Nztz);z � (1 + w;z)N�er]

+(Pttz + Pnn) = �h(u;tter + w;ttez): (2.21)

These equations are still nonlinear, but they can be linearized by the introduction of

Nz = N0
z +�z; N� = N 0

� +��; j�z=N
0
z j � 1; j��=N

0
� j � 1;

Pt = 0 + �Pt; Pn = Pi + �Pn; j �Pn=Pij � 1; (2.22)

where Pi is the initial inner pressure,N 0
� ; N

0
z are initial stress resultants,��;�z; Pt and �Pn are

the small increments added on these initial fields. Introducing (2.22) into (2.21) and keeping
in mind the smallness of the superimposed displacement components and their gradients, we
may obtain the linearized field equations as follows
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In obtaining these equations we have used the following equilibrium equation, which is known
as Laplace’s law,

N0
� = r0Pi: (2.25)

Here �Pn; �Pt are to be determined from the reaction of a viscous fluid with the tube wall and
can be expressed as

�Pn =

�
�p� 2�

@�u

@r

�
r=r0

; �Pt = ��

�
@�u

@z
+
@ �w

@r

�
r=r0

: (2.26)

In order to complete the field equations we must know the constitutive relations for �� and
�z. We recall the definition of membrane forces in the final configuration

T 0

� = h0t0��; T 0

z = h0t0zz; (2.27)
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where h0 is the thickness, t0�� and t0zz are the total circumferential and axial stress components
in the final configuration. The incompressibility of the material requires that

h0(r0 + u)(1 + w;z) = r0h

or

h0 = h(1 + u=r0)
�1(1 + w;z)

�1 �= h(1� u=r0 � w;z): (2.28)

Setting t0�� = t0�� +
�t��; t

0

zz = t0zz + �tzz in (2.27) and utilizing the approximation (2.28), we
have

T 0

� = ht0�� + h
h
�t�� � t0��(u=r0 + w;z)

i
= N0

� +��;

T 0

z = ht0zz + h
h
�tzz � t0zz(u=r0 + w; z)

i
= N0

z +�z: (2.29)

Considering the definitions N0
� = ht0�� and N0

z = ht0zz, from (2.30), we can write

�� = h
h
�t�� � t0��(u=r0 +w;z)

i
; �z = h

h
�tzz � t0zz(u=r0 + w;z)

i
: (2.30)

To determine the explicit expressions of �� and �z we have to know the incremental consti-
tutive equations for �tkl, for which we consult to the theory of so-called ‘small-displacements
superimposed on large initial static deformation’. The derivation of the field equations and
incremental constitutive relations can be found in the books by Green and Zerna [16] and
Eringen and Şuhubi [17]. For this particular type of constitutive relations the incremental
stress tensor �tkl referred to the final configuration may be given by

�tkl = �p�kl + � exp[�(I0
� 3)](��IB0

kl +
�Bkl); (2.31)

where �p is the increment in hydrostatic pressure, �I and �Bkl are defined by

�I = 2B0
ijeij ; eij =

1
2(ui;j + uj;i);

�Bkl = uk;pB
0
pl + ul;pB

0
pk + 2emnc

0
mnc

0
kl � 2ckmc

0
nlemn: (2.32)

Introducing (2.31) into (2.30) we find that the incremental membrane forces are given as
follows
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Introducing (2.34) into (2.23) and (2.24), we have
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These and Equations (2.1) are to be solved subject to the boundary conditions

�u(r0; z; t) =
@u

@t
; �w(r0; z; t) =

@w

@t
: (2.36)

3. Solution to field equations

In this section we shall seek a harmonic-wave type of solution to the governing equations
given in (2.1) and (2.32). For this purpose we set

f�p; �u; �w;u;wg = f �P (r); �U (r); �W (r);A;Bg exp[i(!t� kz)]; (3.1)

where k is the wave number, ! is the angular frequency, �P (r); �U (r); �W (r) are unknown
complex amplitude functions to be determined from the field equations, A and B are two
complex constants representing the wave amplitudes of the tube. Introducing (3.1) into (2.1),
we obtain
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The solution of this set of differential equations may be given by

�U = k[ �CI1(kr) + �DJ1(sr)]; �P = �i��! �CI0(kr);

�W = �i[k �CI0(kr) + s �DJ0(sr)]; s
2
� �k2

� i��!=�; (3.3)

where �C and �D are two integration constants, In(kr) and Jn(sr) are modified and first-kind
Bessel functions of order n, respectively.

To obtain solutions for the equations of an elastic tube, we introduce (3.1) and (3.3) into
(2.35), which results 
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The boundary conditions (2.36) take the following form

i!A�KI1(kr0) �C � kJ1(sr0) �D = 0; (3.6)

!B + kI0(kr0) �C + sJ0(sr0) �D = 0: (3.7)

Equations (3.4)–(3.6) give four homogeneous algebraic relations betweenA;B; �C; �D. In order
for us to have a non-trivial solution for these coefficients, the determinant of the coefficient
matrix must vanish. Before we write this determinant, we shall first eliminate A and B from
these algebraic equations, i.e.("
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�z�3]f(�) +m(
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where the following non-dimensionalized quantities are introduced

� = �c2
0; ! = c0
=R0; N 0

z = �hS; N0
� = �hG

��0
ij = ��ij ; k = �=R0; s = �=R0; � = ��c0R0�

m = �H=(��R0); ��� = r0=R0; f(�) = I1(����)=f����I0(����)g

g(�) = J1(����)=f����J0(����)g; �C = c0C=f���I0(����)g; �D = c0D=f���J0(����)g: (3.10)

In order for us to have a non-trivial solution for the unknown constants C and D, the
determinant of the coefficient matrix must vanish. If this operation is carried out, the result
will be as follows

(A1�
2 +A2)


4 + (A3�
2 +A4�

4)
2 +A5�
4 +A6�

6 = 0; (3.11)
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where the coefficients Ai(i = 1; 2; : : : ; 6) are defined by

A1 = m��2
�[m(f � g) + ��2

��zfg]; A2 = ��2
��z(m+ �z��

2
�g);

A3 = m��2
�[m(S + �22)(g � f)� ��2

��zSfg] + 4�2��4
��

2
z(f � g);

A4 = 2i�
��2
��z[m(f � g) + �z��

2
�g(f � 2)] +m2(f � g)(G� �11)

+m��2
��z[fg(G� �11) + g(S �G+ �12 + �21)� �22];

A5 = m2��2
��22S(f � g);

A6 = (f � g)(2i�
m��2
��z(S �G+ �12 + �21 � �22) +m2[�11�22 � �12�21

+(G� S)�12 �G�22]): (3.12)

Equation (3.11) gives the general dispersion relation of two distinct waves propagating in the
medium. In general, both of these waves are dispersive. In blood-flow problems it is well-
known that the Womersley parameter, �0 = (
=�)1=2, satisfies the condition j�j2�=
 � 1
(Kuiken [12] and Bauer et al. [18]) and, hence, we may approximate � by (�i
=�)1=2 =
i3=2�0. Therefore, we may neglect the terms with factors �
 and �2
2 appearing in (3.12). If
this is done, the dispersion relation reduces to
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4 + (B3�
2 +B4�

4)�2
2 + (B5�
2 +B6)�

4 = 0; (3.13)

where the coefficients Bi(i = 1; 2; : : : ; 6) are defined by

B1 = m��2
�[m(f � g) + ��2

��zfg]; B2 = ��2
��z(m+ �z��

2
�g);

B3 = m��2
�[m(S + �22)(g � f)� ��2

��zSfg];

B4 = m2(f � g)(G� �11) +m��2
��z[gf(G� �11) + g(S �G+ �12 + �21]� �22;

B5 = m2��2
��22S(f � g);

B6 = m2[�11�22 � �12�21 + (G� S)�12 �G�22](f � g): (3.14)

It is seen from (3.13) that the cut-off frequencies of these waves vanish. Introducing the non-
dimensionalized phase velocity as c = 
=� and decomposing it into real and imaginary parts
as

c = X + iY; (3.15)

we may express the propagation velocity v and the transmission coefficient � as follows:

v = 
=Re(�) = X2 + Y 2=X

� = exp[�2� Im(�)=Re(�)] = exp(�2�Y=X): (3.16)

Then the dispersion relation takes the following form

(B1�
2 +B2)c

4 + (B3�
2 +B4)c

2 +B5�
2 +B6 = 0: (3.17)
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Before we study the general dispersion relation, it will be instructive to examine some special
cases.

3.1. LONG-WAVE LIMIT

For waves propagating in arteries the wavelength is, generally, very large in comparison with
the mean radius of the arteries. Thus we may assume that j�j � 1 for which case f(�) ! 1

2
and the dispersion relation takes the following form

D0c
4 +D1c

2 +D2 = 0; (3.18)

where the coefficients Di(i = 0; 1; 2) are defined by

D0 = ��2
��z(m+ ��2

��zg); � = i3=2�0; �0 = (
=�)1=2;

D1 = m2( 1
2 � g)(G� �11) +m��2

��z[
1
2g(G� �11) + g(S �G+ �12 + �21)� �22];

D2 = m2( 1
2 � g)[�11�22 � �12�21 + (G� S)�12 �G�22]: (3.19)

In addition, if the frequency is very low, then the function g(�) also approaches 1/2 and the
dispersion relation (3.18) reduces to

(m+ 1
2�2

��2
�)c

4 +m[(1
4(G� �11)) +

1
2(S �G+ �12 + �21)� �22]c

2 = 0: (3.20)

The roots of this equation are given by

(c2
0)1 = 0; (c2

0)2 = m(G+ �11 + 4�22 � 2S � 2�12 � 2�21)=f2(��2
��z + 2m)g: (3.21)

Particularly, if the initial deformation vanishes, i.e. S = G = 0; �11 = 4; �12 = �21 =
2; �22 = 4 and �z = 1; ��� = 1, (3.21) takes the following form

(c2
0)1 = 0; (c2

0)2 = 6m=(1 + 2m) = 6m+O(m2): (3.22)

This shows that at very low frequencies the viscosity does not effect the phase velocity
significantly.

3.2. INVISCID FLUID APPROXIMATION

If the viscosity of the fluid is very small, we may approximate it as inviscid. In this particular
case, we may obtain the dispersion relation from (3.13) and (3.14) by setting�0 = (
=�)1=2

!

1 and g(�)! 0, i.e.,

��2
�(mf�2 + �z)c

4
� [m��2

�f(S + �22)�
2 + ��2

��z�22 +mf(�11 �G)]c2

+mf [��2
��22S�

2 + �11�22 � �12�21 + (G� S)�12 �G�22] = 0: (3.23)

When the viscosity of the fluid vanishes, the wave preserves its dispersive character. In
particular and in addition to this, if the wavelength is very large as compared to the mean
radius, we have from (3.23)

�z��
2
�c

4
�[��2

��z�22+
1
2m(�11�G)]c

2+ 1
2m[�11�22��12�21+(G�S)�12�G�22] = 0:(3.24)
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Furthermore, if the initial deformation vanishes, i.e. �11 = 4; �12 = �21 = 2; �22 = 4; S =
G = 0; ��� = 1; �2 = 1, then the above equation reduces to

c4
� 2(m+ 2)c2 + 6m = 0: (3.25)

The roots of this quadratic equation are given by

(c2)1;2 = (2 +m)� (m2
� 2m+ 4)1=2: (3.26)

Since for thin tubes the parameter m is very small (3.26) may be approximated by

c2
1 = 4 +O(m); c2

2 =
3
2m+O(m2); (3.27)

or, in terms of the real physical quantities, we have

v2
1 = �c2

1=� = 4�=�; v2
2 = �c2

2=� = 3�H=(2��R0): (3.28)

For an isotropic, incompressible and elastic material the constant � is related to Young’s
modulus E through � = E=3, then the above wave speeds become

v2
1 = 4E=(3�); v2

2 = EH=(2��R0): (3.29)

Of these wave speeds, the first one corresponds to the Lamb and the second to the Young
(Moens-Korteweg) modes, respectively.

4. Numerical analysis and discussion

Having investigated some special cases by analytical means, we can now study the more
general case by a numerical approach. To this end, we need explicit expressions for F and G,
and the numerical values of m and �. For the membrane approximations �� = ��� = r0=R0

and t0rr �= 0, thus from (2.9) we have

S = (��2
��

2
z � ��2

z )F (���); G = (��2
��

2
z �

���2
� )F (���);

F (���) = exp[�(���2
� + ��2

z + ��2
��

2
z � 3)]; Pi = G=(R0

���);m = �H=(��R0): (4.1)

From (2.35) the non-dimensionalized coefficients �ij may be given by

�11 = F (��)[(�
2
��

2
z + 3��2

� ) + 2�(�2
��

2
z � ��2

� )2]

�12 = F (��)[(�
2
��

2
z + ��2

� ) + 2�(�2
��

2
z � ��2

z )(�2
��

2
z � ��2

� )]

�21 = F (��)[(�
2
��

2
z + ��2

z ) + 2�(�2
��

2
z � ��2

z )(�2
��

2
z � ��2

� )]

�22 = F (��)[(�
2
��

2
z + 3�2

z) + 2�(�2
��

2
z � ��2

z )2] (4.2)
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Figure 2. Variation of primary wave speed with Womersley parameter, inner pressure and axial stretch ratio.

Figure 3. Variation of secondary wave speed with
Womersley parameter, inner pressure and axial stretch
ratio.

Figure 4. Variation of transmission coefficient of pri-
mary wave with Womersley parameter, inner pressure
and axial stretch ratio.

Using the experimental results by Simon et al. [15] on canine abdominal arteries, we have
previously determined the value of coefficient � as 0�82. Employing this value of � and
noticing that �=�� �= 1, we analyzed the dispersion relation numerically for m = 0�05 and the
results are depicted in Figures 2–5. Figure 2 gives the variation of the speed of the primary
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Figure 5. Variation of transmission coefficient of sec-
ondary wave with Womersley parameter, inner pres-
sure and axial stretch ratio.

Figure 6. Variation of primary wave speed with inner
pressure and axial stretch ratio.

Figure 7. Variation of secondary wave speed with inner
pressure and axial stretch ratio.

Figure 8. Variation of transmission coefficient of pri-
mary wave with inner pressure and axial stretch ratio.

wave (Lamb mode) with Womersley parameter �0, inner pressure and axial stretch ratio.
The numerical evaluation indicates that the wave speed increases with Womersley parame-
ter and inner pressure, but decreases with axial stretch ratio (see also Figure 6). The result
is consistent with the findings of Erbay et al. [19], who employed a strain-energy density
function applicable to soft biological tissues, but differs from those of Atabek and Lew [8],
Kuiken [12] and Demiray and Ercengiz [20], who utilized the constitutive relations applicable
to engineering materials. The main factor for such a different behavior is that soft biologi-
cal tissues get stiffer under large deformation, whereas the engineering materials get softer with
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Figure 9. Variation of transmission coefficient of secondary wave with inner pressure and axial stretch ratio.

increasing deformation. In other words, because of the the different inner structure of biological
materials, the tangent modulus increases with inner pressure, while the tangent modulus for
engineering materials decreases with deformation. The variation of the speed of the secondary
wave (Young mode) with Womersley parameter �0, inner pressure and the axial stretch ratio
is shown in Figure 3. This figure reveals that the speed of the secondary wave increases with
Womersley parameter and stretch ratio, but decreases with inner pressure (see also Figure 7).
However, after a certain value of the Womersley parameter, the speed becomes insensitive to
variations of this parameter. This result again is consistent with the result of [19], but differs
from other works that employed the constitutive relation of engineering materials. As shown
in Figure 4, the transmission coefficient of the primary wave first decreases very rapidly
with Womersley parameter and then increases steadily with this parameter. This coefficient
increases with inner pressure, but decreases with the axial stretch ratio (see also Figure 8).
Finally, the variation of the transmission coefficient of the secondary wave is depicted in
Figure 5. This coefficient first decreases very rapidly with Womersley parameter and then
starts to increases with both the same parameter and the inner radius, but decreases with axial
stretch ratio (see also Figure 9).

In conclusion, by employing the large deformation analysis and the theory of ‘small
deformations superimposed on large initial static deformations’ for an elastic thin cylindrical
shell and the linearized equations of a viscous fluid, the propagation of harmonic waves
in two such interacting media is studied and the dependence of propagation velocities and
transmission coefficients on the initial deformation, material and geometrical characteristics
is obtained. This nonlinear theory makes it possible to trace the variation of propagation
characteristics with changes in blood pressure, the mechanical properties and the geometrical
characteristics of the arterial wall material. Such observations can be used in the diagnosis of
some circulatory mulfunctionings.
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In studying this problem, we have employed the linearized equations of thin shells, which
are valid for H=R0 6 0�1. However, even for large arteries, this ratio changes between
1=6 � 1=4 and, hence, the thin-shell theories cannot be applied in the case of arterial
mechanics. Thus, for a better understanding of wave propagation in arteries, the present
formulation should be extended to thick-shell theories. As a final remark, we should point
out that the analysis of nonlinear field equations for the tube and the fluid will be another
interesting subject for future study.
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ics and Applied Mathematics Research Unit.

References

1. D.A. McDonald, Blood Flow in Arteries, Baltimore: Williams and Wilkins (1966) pp. 496.
2. Y.C. Fung, Biodynamics: Circulation. New York: Springer Verlag (1984) pp. 404.
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